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ABSTRACT We isolated phage Ec_Makalu_002, which infects uropathogenic strains
of Escherichia coli. Here, we report its complete genome sequence, annotated fea-
tures, and relatedness to other phages.

One of the most common pathogens responsible for urinary tract infection (UTI)
is Escherichia coli (1). The biggest concern about these uropathogenic strains

of E. coli is their insensitivity to existing antibiotics and their high recurrence rates,
which are linked to their ability to form both extra- and intracellular biofilm-like
communities within the bladder (2, 3). To address the resistance and recurrence
problem, phages are currently being suggested as an effective and alternative
therapeutic (4), especially in developing countries with poor sanitation and hygiene
(5). In this report, we describe the genome of Ec_Makalu_002, which was isolated
from a municipal wastewater canal in Kathmandu, Nepal.

Phage Ec_Makalu_002 was originally enriched from a filtered (0.2-�m pore size) waste-
water sample by infecting an aerobically growing culture of a deidentified clinical strain of
uropathogenic E. coli at 37°C in LB broth. The host was obtained from the National Public
Health Laboratory in Nepal. A spot test demonstrated that Ec_Makalu_002 also possessed
the ability to propagate on a laboratory strain of E. coli K-12 (MG1655), which was utilized
for purification using the soft-agar overlay method (6). A high-titer phage lysate (2.3 � 109

PFU/ml) was used to extract the genomic DNA using the phenol-chloroform extraction
method. The DNA library was prepared using an Illumina Nextera XT kit, and whole-
genome sequencing was performed on a NextSeq 500 platform, resulting in 9,387,393
150-bp paired-end reads. Reads were inspected for overall quality using FastQC (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/), adaptor sequence trimming
was performed using Trimmomatic (7), and de novo sequence assembly was done
using SPAdes 3.13.1 (8). All tools were run with default parameters unless otherwise
specified. The largest assembled contig (164,751 bp with 4,895-fold coverage) was
obtained with 77-bp identical sequences at each end, suggestive of a circularly
permuted DNA packaging mechanism. The assembled genome was closed with PCR
using primers (5=-GCGATTGATGCTATTCAAATGCAG-3= and 5=-CCGATAATCTCTTTTAGACCG
GACG-3=) facing off the ends and manually corrected matching of the Sanger
sequencing reads. Tools available at the Galaxy and WebApollo instances via the
Center for Phage Technology (CPT) (https://cpt.tamu.edu/galaxy-pub/) were used
for structural and functional annotation of the assembled contig (9, 10). For example,
GLIMMER 3.0 (11) and MetaGeneAnnotator 1.0 (12) were used to identify coding genes,
tRNA prediction was done with ARAGORN 2.36 (13), and transcriptional terminators
were manually inspected based on prediction from TransTermHP (14). Gene functions
were predicted largely by similarity to the Canonical Phages database based on BLASTp
searches (15) and/or confirmed using InterProScan (16) and TMHMM (17), tools that
were available in the CPT WebApollo interface (https://cpt.tamu.edu/galaxy-pub/).
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The complete genome of phage Ec_Makalu_002 was 164,674 bp long with an
average GC composition of 40.6%. The DNA sequence similarity of Ec_Makalu_002
was calculated using progressiveMauve 2.4.0 (18) and found to be closely related to
T4-like enterobacterial phages, including ECD7 (GenBank accession number
NC_041936.1; 92.26%), GEC-3S (HE978309.1; 92.23%), and Phi1 (EF437941.1; 91.43%),
all of which were isolated against virulent nonlaboratory strains of E. coli. Consistent
with the sequence analysis, imaging using transmission electron microscopy showed
that Ec_Makalu_002 belongs to the Myoviridae family (Fig. 1). Based on its similarity to
the T4-like phages and to maintain the consistency with linear genome structure in the
phage database, the genome was reopened at the rIIA gene homolog prior to submis-
sion. This myophage encodes 274 predicted coding sequences, but no tRNA genes
were detected. Putative lysis genes, holin, endolysin, and spanins were found to be
scattered throughout the genome, similar to that of the T4 phage.

Data availability. The genome sequence and associated data for phage Ec_
Makalu_002 were deposited under GenBank accession number MN709127, BioProject
accession number PRJNA594990, and SRA accession number SRR10671636.
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